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ABSTRACT: Blend films of polypropylene/poly(ethylene-
octane) at various mixing times are prepared by freezing-
microtome. The temporal evolution of their phase morphol-
ogies is investigated by phase contrast microscope (PCM).
The digital image analysis, which contains the analysis in
both real and wave-number space, is introduced to deal
with the PCM graphs. The characteristic length, L in real
space, the average domain spacing, and the average chord
lengths in wave-number space, are used to express the do-
main sizes of two phases. The temporal evolution of phase

morphology reaches the dynamic equilibrium between
breakup and coalescences of domains at the late stage of
mixing. In addition, two different fractal dimensions are
defined to discuss the symmetry of the distribution of dis-
persed phase domains and the distribution uniformity: Df

for the symmetry and Dc for the uniformity. � 2007 Wiley
Periodicals, Inc. J Appl Polym Sci 104: 2778–2784, 2007
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INTRODUCTION

The toughening of polymers has been studied for
more than half a century. More and more research-
ers have been focusing on polymer blends. Phase
structure of polymer blends during the mixing,
which influences their mechanical properties, has
attracted much more attention. To obtain materials
with pre-eminent performance, many smart people
have studied the evolution of the phase morphology
during melting and mixing. To control the blend
properties, the morphology development during
processing should be understood. In general, compo-
sition, viscosity ratio, molar mass, elasticity ratio,
interfacial tension, shear rate/shear stress, and mix-
ing time play a critical role in the development of
microstructure in polymer blends.1–8 To monitor the
phase formation and evolution in time, some smart
researchers have studied changes of the phase mor-
phology during the mixing and found that the
changes of phase morphology occur within the first
2 min.8–13

During the mixing, the phase dimension size
decreases promptly at the initial stage. Here, the
breakup of domains is preferential because of the

shear effect. At the late stage, with the increase of
coalescence produced by collision of the dispersed
phase domains, the average size of these domains
levels off. And the breakup and coalescences of these
domains reach a dynamic equilibrium at the last stage.

PP is widely used in packing, textiles, and house-
hold goods, but the usefulness of PP is still limited
for its poor impact resistance. Therefore, toughening
of PP has been a long-standing interest of polymer
researchers.14,15 In recent years, due to the excellent
performances of POE with high elasticity, strength,
and elongation rate, which is polymerized using
metallocene initiator by Dow Chemical Company
(Midland, MI), much work has paid more attention
to toughening PP, using POE. Many researchers
have done much work on mechanical, thermal,
rheological, morphological, and interfacial properties
of polypropylene/poly(ethylene-octane) (PP/POE)
blends.5,16–21 However, less work is paid attention to
dispersion dynamics of the dispersed phase by pat-
terns analysis.

Quantitative description of the phase morphology
is rather difficult and there is rarely useful tool to
resolve it.22 Yet, fractal theory is an exciting tool to
describe the irregular patterns of the micrographs.
Although the fractal theory is very efficient to the
micrographs, which have self-similarity, few papers
are focused on the applications of the fractal theory
in polymer blends. In addition, for polymer blends,
micrographs of the phase morphologies represent
the spatial distribution and temporal evolution of
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such parameters as the concentration and the orien-
tation of the dispersed phase domains, and also, cor-
respond to the phase formation and evolution of
polymer blends. As it is known, it is an effective
method to use the digital image analysis (DIA) for
dealing with micrographs of the phase morphol-
ogy.23–27 Using the DIA, not only various informa-
tion, e.g., dimension and shape of domains of the
dispersed phase, but also a power spectrum image
obtained by two-dimensional Fourier transformation
(2DFT) of the original image can be obtained.

Therefore, in this article, DIA technology and the
fractal theory are used to analyze micrographs of
PP/POE binary blends, which are obtained by phase
contrast microscope (PCM) for finding some useful
information about the temporal evolution of phase
morphology.

THEORY

Determination of the domain sizes

Characteristic length in real space

A characteristic length of domains, L, is defined as a
similar manner with definition given by Guinier and
Fournet.28 L is defined as a span from one side of
domains to another, which is shown in Figure 1, and
one could easily understand its meaning in real
space. To scan the image using a set of lines circling
around the centroids of domains for every 2 degrees,
a set of L could be easily obtained. And also, average
characteristic length, Lm, could be attained by count-
ing L. Using the graph-estimation method,29 the dis-
tribution of L can be studied in detail. If a given t
is a positive random variable in ln t � N (m, s2), t
obeys a log-normal distribution and can be ex-
pressed as t � ln (m,s2). Here, m is the expectation

and s is the standard variance. s denotes the distri-
bution range of t. The larger s is, the wider the distri-
bution range is. Therefore, it is appropriate to judge
whether the distribution of L obeys a log-normal dis-
tribution. Generally, the function of the log-normal
distribution is described by

FðtÞ ¼ log effiffiffiffiffiffi
2p

p
st
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However, this relation is a continuously increasing
curve rather than a straight line. It can be expressed
by a standard normal distribution function as fol-
lows:
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Because the standard normal distribution function is
a monotonously increasing function, its inverse func-
tion exists, expressed by

F�1½FðtÞ� ¼ log t� m
s

(3)

So if F�1[F(t)] is marked as Y and log t as X, eq. (3)
can be changed to

Y ¼ 1

s
X � m

s
(4)

Obviously, eq. (4) relates to a straight line in the X–
Y-frame whose slope is 1/s and intercept is �m/s.
Hence, it is found that the log-normal distribution
function can be described as an increasing straight
line, which was called the graph-estimation method.

Average chord length, average domain spacing in
wave-number (h) space

Domain Sizes of dispersed phase in polymer blends
can not only be defined in the real space, but also in
the wave-number (h) space. For phase contrast
micrographs, the images in the h space can be
gained by applying 2DFT to the micrographs in the
real space. Furthermore, there exists a corresponding
relationship between the 2DFT images of micro-
graphs and small-angle light scattering (SALS)
images.30 Therefore, SALS can be used to study the
2DFT images information about phase morphology
of polymer blends.

As shown in the Figure 1, one can easily calculate
the sizes of the domains using a correlation function.
So the authors apply a modification, which fits
in spherically symmetrical systems, to Debye–

Figure 1 Schematic representation of scanning on a pat-
tern of phase structure and the average chord lengths.
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Bueche31,32 description of scattering from random
heterogeneous media,

IðhÞ ¼ K
�
Z2

�
av

Z 1

0

gðrÞ sin hr

hr
r2dr (5)

where K is a proportionality constant and h ¼ (4p/
l)sin y. g(r) is the correlation function. For systems not
having a apparently defined structure, g(r) often
decreases monotonically with r and may be described
by an empirical equation

gðrÞ ¼ expð�r=acÞ (6)

where ac is considered as a correlation distance and r
defines the size of the heterogeneity. For dilute dis-
crete domains, ac corresponds to the domain size,
while for more concentrated systems, ac is not simply
related to the size of the structural unit but depends
on both interdomain and intradomain distances.

If eq. (6) is substituted into eq. (5), one can obtain
upon rearrangement,

1

½IðhÞ�1=2
¼ 1

ðK0ac3Þ1=2
ð1þ h2ac

2Þ (7)

In fact, a plot of I(h)�1/2 against h2 may lead to two
straight lines (shown in Fig. 2). For SALS where h is
small, the corresponding ac1 is due to scattering
from large domains. As for SALS, when h tends to
1, the corresponding ac2 is due to scattering from
the small domains.

Porod33,34 defines the average chord lengths l1 and
l2, so one can obtain their values by means of formu-
las as follows:

l1 ¼ ac1=f2 (8)

l2 ¼ ac2=f1 (9)

where f1 is volume fracture of the matrix phase,
and f2 is the volume fracture of the dispersed phase.
l1 corresponds to the continuous phase, and l2 to the
dispersed phase, which are shown in Figure 1.

If the 2DFT spectrum is not round but ellipsoidal,
the average domain spacing35 is determined by the
average of the minimum and the maximum of inter-
domain spacings, which are obtained from peak
positions of the 2DFT profiles along the white lines
shown in Figure 3.

EXPERIMENTAL

Materials

A commercial PP (No.1300, density 0.91 g/cm3) is
supplied by Beijing Yanshan Petrifaction (Beijing,
People’s Republic of China). POE (No.8150, density
0.868 g/cm3, ASTM D 792) is obtained from Dow
Chemical.

Preparation of blends

The PP and POE are cleaned by distilled water and
dried at 408C in vacuum oven for 5 h. And they are
blended in the intermittent mixer (Model XSM-30,
mixer with screw diameter 35 mm, made in Shang-
hai, China). PP and POE elastomer, with the weight
ratio of 70/30, are mixed at 2008C at 64 rpm. The
blending starts with adding PP and POE into the
mixer and the starting point of time is specified as
0 s. The mixing continues for 10 min at 64 rpm. To
study the evolution of phase morphology and the
dispersion of POE domains in PP matrix, PP/POE
blends are obtained, respectively, at 30th s, 1st, 2nd,
4th, 6th, 8th, and 10th min in the blending process.
After the acquired blends are taken from the mixer,
and then immediately lowed into liquid nitrogen for
10 min, their phase structures can be frozen.Figure 2 A schematic plot of I(h)�1/2 versus h2.

Figure 3 2DFT spectrum with ellipse marked its long axis
and short one.
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Specimen preparation

The PP/POE blends are cut into specimens for about
30 mm by the freezing-microtome (Leica CM1850,
made in Germany). The specimens are observed on
a PCM (NIKON Eclipse TE2000-U, made in Japan)
with 20 � 10 magnification. Such a thickness makes
it possible to neglect the overlapping of domains of
the dispersed phase. The micrographs are attained
by CCD camera.

RESULTS AND DISCUSSION

Evolution of phase morphology by PCM

According to sequence of the blending time, the
micrographs and their corresponding power spec-
trums, which are obtained by 2DFT of the origin
micrographs are shown in the Figure 4. From the
2DFT images, the brightness of the scattering circle
becomes increasingly stronger with the blending
time.

According to the previously-mentioned theory, the
PCM graphs are scanned by a set of different direc-
tional lines so that a series of Lm were obtained
(shown in Fig. 8). Apparently, before the 4th min, it
is the fact that the average characteristic length of
the dispersed phase domains decreases gradually,
and then levels off. By means of the SALS theory,
the average chord length l2 of the dispersed phase
domains can be calculated (shown in Fig. 5). The
trend of l2 is consistent with that of Lm during the
blending. Therefore, it is appropriate to apply
the 2DFT and SALS theory to PCM graphs for calcu-
lating the corresponding parameters, which mark
the phase morphology. The average chord length of
continuous phase, l1, grows gradually before the 4th
min, and then levels off. At the initial stage of blend-
ing, the domain sizes of the POE phase are larger
generally and the distances of these domains are
shorter apparently because the domains have not
still fully been broken up into small droplets under
the shearing effect, though they may be soften or
melted. At the same time, the domains of POE are
not uniform but clustered, so the average distance of
these domains is shorter. Although there are colli-
sions and coalescences in these small droplets, they
are not of predominance. After the initial stage, with
the help of the shearing effect, melted domains have
broken up adequately into small ones, the range of
whose distribution in the domains size turns to be
narrower. The average domain size will decrease,
while the average distance of the interdomains
increases. In the light of the increase in number
of the small domains, the chance of collisions and
coalescences is enhanced largely. Therefore, the
domains reach a dynamic equilibrium between

collisions or coalescences and dispersions. As a result,
the average domain size and the average distance of
the interdomains reach a steady value. Changes in
parameters with the blending time are similar with

Figure 4 PCM graphs (left) and their corresponding
2DFT images (right) of PP/POE blends.
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those provided in references,8–13 but a slight differ-
ence between the results and the references8–13 lies
in the temporally different starting point at the ini-
tial stage of blending. These parameters can repre-
sent the temporal evolution of the phase morphology
and the dynamics in a way.

In addition, according to the peak position of the
2DFT profile along the white lines shown in Figure
3, the average interdomain spacings of PP/POE (70/
30) blends at different mixing times are calculated
and showed in Figure 6. From the figure, it is
obvious that the average interdomain spacing
increases distinctly before the 4th min, and after
that, levels off basically. The trend of the average
interdomain spacing is similar with l1, and it may
denote that the average interdomain spacing corre-
sponds to l1. Once again, it is reasonable to apply
the SALS and the 2DFT theory to PCM graphs for
analyzing the morphology of blends.

In Figure 7, the relation between the cumulative
distribution of L, that is P[F(L)], and L is shown. The
relation between P[F(L)] and L obeys a logarithmic
linear one in most range of the domain size. Accord-
ing to the previously mentioned theory, it can be
concluded the distribution of L obeys the log-normal
distribution. Besides the distribution of L referred
earlier, the spatial distribution of the dispersed
phase domains, can be deeply explored by a nonlin-
ear mathematical method, the fractal dimension. The
relation between number of squares [N(r)] and the
fractal dimension obeys a power law on the basis of
box-counting method expressed by

NðrÞ / r�Df (10)

where r is a kind of length, and Df is the fractal
dimension. However, the fractal dimension is calcu-
lated in dimensionless region shown in Figure 8.
The authors’ cover points in the space with the

Figure 5 Curves of the average chord length of PP/POE
(70/30) blends at different mixing times.

Figure 6 Curve of the average interdomain spacing of
PP/POE (70/30) blends at different mixing times.

Figure 7 P[F(L)] � L plots of PP/POE (70/30) blends at
different mixing times.

Figure 8 A schematic representation of the dimensionless
region.
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square whose border length is r and note down the
number of the squares that at least contain one
point by N(r). Thus, the fractal dimension can be
obtained by plotting log N(r) against log r. Df is
introduced to describe dispersing state of the dis-
persed phase domains. Figure 9 shows the Df val-
ues of PP/POE blend at different mixing times at
30% POE fraction.

It is obvious that in the dimensionless region, Df

grows gradually before the 4th min and from then
on, levels off as shown in Figure 9. At the start of
blending, the dispersed phase domains are not dis-
persed fully and most of these domains should be
large, which can influence on the dispersion. At that
time, these domains have not yet taken up the whole
two-dimensional plane. Based on the kind of fractal
dimension, one can fully consider the dispersion as
a fractal structure. After that, with the help of the
shearing effect of rotors, the number of the domains
becomes more and more, and the domains are dis-
persed more symmetrically, especially after the 6th
min. At last, the fractal dimension grows up to a
steady value, that is 1.98, but it doesn’t reach 2. It is
reasonable to explain the phenomena by the fact that
collisions and coalescences of more and more dis-
persed domains have an influence on the dispersion.
Under the shearing effect, both the coalescence and
dispersion reach the equilibrium rather than the dis-
persion of the dispersed phase domains only, so the
fractal dimension should range from 1 to 2.

To prove that the phase morphology has self-
similarity, it is necessary to introduce a scale function
[SN(r)], which is defined by a formula as follows:

SNðrÞ ¼ NðrÞrDf (11)

Curves of the scale function of PP/POE blends at
different mixing times are shown in Figure 10. As
shown in Figure 10, the fact that the scale ratios fluc-
tuate on a steady value proves phase morphology to

be the fractal character. Besides the fractal structure
of the distribution, the authors also introduce the
other fractal dimension (Dc) to describe that the dis-
tribution is uniform and isotropic by using a correla-
tive density function.

Suppose r(x) as the density at a position x of a set
of points which are a random distribution in the
space. The correlative density function c(r) is given
by

cðrÞ ¼ hrðxÞrðxþ rÞi (12)

where <�> denotes an average. If the distribution is
uniform and isotropic, c(r) is a function which only
relates to the distance, r, between two points. Com-
monly, an exponential function exp(r/r0) or a Gaus-
sian function exp(�r2/r0

2) is assumed as the correla-
tion function in theoretical model. However, they
can’t be introduced to the fractal theory because
both of them have an r0. Any couple of points whose
distance is less than r0 are relative with each other,
but the correlation decays rapidly when the distance
is more than or equal to r0. On the other hand, if the
phase morphology is fractal, the correlative density
function obeys a power law. Hence, it is expressed
by a relation, in which there is no r0, given as fol-
lows,

cðrÞ / r�a (13)

And the C(r) becomes 2�a times as small as before
when the distance of the two points becomes 2 times
as long as before. The relation between the exponent
a and the fractal dimension Dc can be expressed sim-
ply by

Dc ¼ d� a (14)

where d denotes the spatial dimension.

Figure 9 Df and Lm curves of PP/POE (70/30) blends at
different mixing times. Figure 10 SN (r)/SN (r)max � r/rmax curves of PP/POE

(70/30) blends.
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If the correlative density function c(r) scales as eq.
(14), its Fourier transform I(h), that is the power
spectrum, should also obey a power law. In fact, if
0 < d � Dc < 1, there is,

IðhÞ ¼ 4

Z 1

0

cðrÞ cos ð2phrÞdr / hd�Dc�1 (15)

According to the relation, Dc can be estimated easily
from the power spectrum. Dc denotes that if the
points cluster together, they have an intimate corre-
lation and Dc is larger, which illuminates that the
scattering uniform is imperfect.

Figure 11 represents the relation between Dc and
the different mixing times. The change in Dc is di-
vided into two stages. Obviously, before the 4th
min, Dc decreases so rapidly that the uniformity of
the spatial distribution becomes more perfect. From
then on, Dc levels off at a smaller value under the
dynamic equilibrium of the breakup and coalescence
of the dispersed phase domains. Thus, the uniform-
ity is invariable in general.

CONCLUSIONS

The results of the real space show that the distribu-
tion of the characteristic length obeys a log-normal
one and the initial stage is the main stage of the evo-
lution of phase morphologies. The initial stage is
mainly from the very beginning until the 4th min.
At this stage, the larger dispersed phase domains
may be broken up into smaller ones, and the average
size of the domains decreases. At the last stage, the
average size levels off at a smaller value. The dis-
persed phase domains reach the dynamic equilib-
rium between breakup and coalescences at the late
stage of mixing. The results of the wave-number
space, obtained by using DIA, which mainly contains
2DFT and SALS theories, accord with those of the

real space. It is valid to apply the DIA technology to
the PCM graphs.

In addition, in the given scale and range, the spa-
tial distribution of domains of dispersed phase exists
a fractal property, and the distribution is closer to
two-dimension with the mixing time. Meanwhile,
the other fractal dimension decreases rapidly at the
initial stage and later on, levels off at a smaller
value, which denotes that the uniformity of the dis-
tribution becomes more perfect.
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